JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME PROPERTIES OF
 TRIANGLE

(PRACTICE SHEET)

LEVEL- 1

Question

 based on
Sine and Cosine rule

Q. 1 In $\triangle \mathrm{ABC}, \mathrm{a}=4, \mathrm{~b}=12$ and $\mathrm{B}=60^{\circ}$ then the value of $\sin \mathrm{A}$ is-
(A) $\frac{1}{2 \sqrt{3}}$
(B) $\frac{1}{3 \sqrt{2}}$
(C) $\frac{2}{\sqrt{3}}$
(D) $\frac{\sqrt{3}}{2}$
Q. 2 Let ABC be a triangle such that $\angle \mathrm{A}=45^{\circ}$, $\angle \mathrm{B}=75^{\circ}$ then $\mathrm{a}+\mathrm{c} \sqrt{2}$ is equal to-
(A) 0
(B) b
(C) 2 b
(D) -b
Q. 3 In $\triangle \mathrm{ABC}, 2(\mathrm{bc} \cos \mathrm{A}+\mathrm{ca} \cos \mathrm{B}+\mathrm{ab} \cos \mathrm{C})=$
(A) 0
(B) $a+b+c$
(C) $a^{2}+b^{2}+c^{2}$
(D) None of these
Q. 4 In $\triangle \mathrm{ABC}$,
$(\mathrm{b}-\mathrm{c}) \sin \mathrm{A}+(\mathrm{c}-\mathrm{a}) \sin \mathrm{B}+(\mathrm{a}-\mathrm{b}) \sin \mathrm{C}=$
(A) $a b+b c+c a$
(B) $a^{2}+b^{2}+c^{2}$
(C) 0
(D) None of these
Q. 5 If in a $\Delta A B C, a \sin A=b \sin B$, then the triangle is-
(A) isosceles
(B) right angled
(C) equilateral
(D) none of these
Q. 6 In any $\Delta \mathrm{ABC}$ if $2 \cos \mathrm{~B}=\frac{\mathrm{a}}{\mathrm{c}}$, then the triangle is -
(A) right angled
(B) equilateral
(C) isosceles
(D) none of these
Q. 7 The straight roads of intersect at an angle of 60°. A bus on one road is 2 km away from the intersection and a car on the other road is 3 km away from the intersection. Then the direct distance between the two vehicles is-
(A) 1 km
(B) $\sqrt{2} \mathrm{~km}$
(C) 4 km
(D) $\sqrt{7} \mathrm{~km}$
Q. 8 If $\mathrm{a}=9, \mathrm{~b}=8$ and $\mathrm{c}=\mathrm{x}$ satisfies $3 \cos C=2$, then-
(A) $x=5$
(B) $x=6$
(C) $x=4$
(D) $x=7$
Q. 9 In a triangle ABC , $\sin \mathrm{A}: \sin \mathrm{B}: \sin$ $C=1: 2: 3$. If $b=4 \mathrm{~cm}$, then the perimeter of the triangle is
(A) 6 cm
(B) 24 cm
(C) 12 cm
(D) 8 cm

Question based on

Napier and Projection Rule

Q. 10 In any $\triangle \mathrm{ABC}$,
$2[\mathrm{bc} \cos \mathrm{A}+\mathrm{ca} \cos \mathrm{B}+\mathrm{ab} \cos \mathrm{C}]=$
(A) $a^{2}+b^{2}+c^{2}$
(B) $a^{2}-b^{2}+c^{2}$
(C) $a^{2}+b^{2}-c^{2}$
(D) $a^{2}-b^{2}-c^{2}$
Q. 11 In a $\Delta \mathrm{ABC}$, if $\mathrm{A}=30^{\circ}, \mathrm{b}=2, \mathrm{c}=\sqrt{3}+1$, then $\frac{\mathrm{C}-\mathrm{B}}{2}=$
(A) 15°
(B) 30°
(C) 45°
(D) None of these
Q. 12 In $\Delta \mathrm{ABC}$, if a $\cos \mathrm{A}=\mathrm{b} \cos \mathrm{B}$, then the triangle is-
(A) Isosceles
(B) Right angled
(C) Isosceles or right angled
(D) Right angled isosceles
Q. 13 In a triangle ABC , $(\mathrm{b}+\mathrm{c}) \cos \mathrm{A}+(\mathrm{c}+\mathrm{a}) \cos \mathrm{B}+(\mathrm{a}+\mathrm{b}) \cos \mathrm{C}$
(A) 0
(B) 1
(C) $a+b+c$
(D) $2(a+b+c)$
Q. $14 \cot \frac{\mathrm{~A}+\mathrm{B}}{2} \cdot \tan \frac{\mathrm{~A}-\mathrm{B}}{2}=$
(A) $\frac{a+b}{a-b}$
(B) $\frac{a-b}{a+b}$
(C) $\frac{a}{a+b}$
(D) None of these

Question

based on

Half angle Formulae

Q. 15 In any $\Delta \mathrm{ABC},\left(\frac{\mathrm{b}-\mathrm{c}}{\mathrm{a}}\right) \cos ^{2}\left(\frac{\mathrm{~A}}{2}\right)+$ $\left(\frac{\mathrm{c}-\mathrm{a}}{\mathrm{b}}\right) \cos ^{2}\left(\frac{\mathrm{~B}}{2}\right)+\left(\frac{\mathrm{a}-\mathrm{b}}{2}\right) \cos ^{2}\left(\frac{\mathrm{C}}{2}\right)=$
(A) 2
(B) 0
(C) 1
(D) None of these
Q. $16 \quad b c \cos ^{2} \frac{A}{2}+c a \cos ^{2} \frac{B}{2}+a b \cos ^{2} \frac{C}{2}=$
(A) $(s-a)^{2}$
(B) $(\mathrm{s}-\mathrm{b})^{2}$
(C) $(\mathrm{s}-\mathrm{c})^{2}$
(D) s^{2}
Q. 17 In a $\triangle A B C, s\left[\tan \left(\frac{A}{2}\right)+\tan \left(\frac{B}{2}\right)\right]$ is equal to
(A) $\frac{a b}{R}$
(B) $\frac{2 a b}{\Delta}$
(C) $\mathrm{c} \cot \left(\frac{\mathrm{C}}{2}\right)$
(D) None of these
Q. 18 In triangle $A B C, \tan \frac{A}{2}: \tan \frac{B}{2}=$
(A) $(\mathrm{s}-\mathrm{b}):(\mathrm{s}-\mathrm{c})$
(B) $\mathrm{s}:(\mathrm{s}-\mathrm{c})$
(C) $(\mathrm{s}-\mathrm{a}):(\mathrm{s}-\mathrm{b})$
(D) $(\mathrm{s}-\mathrm{b}):(\mathrm{s}-\mathrm{a})$

Question based on

Area of triangle

Q. 19 In a $\triangle A B C,(b+c-a) \tan \left(\frac{A}{2}\right)$ is equal to-
(A) $\frac{2 \Delta}{s}$
(B) $\frac{\Delta}{\mathrm{s}}$
(C) $\frac{\Delta s}{b c}$
(D) $\frac{\mathrm{S}}{\mathrm{a}} \mathrm{R}$
Q. 20 In a $\triangle \mathrm{ABC}$, if $\mathrm{a}=2 \mathrm{x}, \mathrm{b}=2 \mathrm{y}$ and $\angle \mathrm{C}=120^{\circ}$, then the area of the triangle is-
(A) $x y$
(B) $x y \sqrt{3}$
(C) $3 x y$
(D) $2 x y$

Question based on

Circumcircle \& Radius

Q. 21 In a $\triangle \mathrm{ABC}, 2 \mathrm{R}^{2} \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}=$
(A) Δ
(B) 2Δ
(C) $\Delta / 2$
(D) None of these
Q. 22 If the lengths of the sides of a triangle are 3,4 and 5 units then R the circumradius is-
(A) 2.0
(B) 2.5
(C) 3.0
(D) 3.5
Q. 23 In an equilateral triangle of side $2 \sqrt{3} \mathrm{cms}$. The circumradius is-
(A) 1 cm
(B) $\sqrt{3} \mathrm{~cm}$
(C) 2 cm
(D) $2 \sqrt{3} \mathrm{~cm}$.

Question based on
 Incircle \& Inradius

Q. 24 In any $\triangle A B C, \cos A+\cos B+\cos C=$
(A) $\left(1+\frac{r}{R}\right)$
(B) $\left(1-\frac{r}{R}\right)$
(C) $\left(1+\frac{R}{r}\right)$
(D) None of these
Q. 25 In a triangle $\mathrm{a}=13, \mathrm{~b}=14, \mathrm{c}=15, \mathrm{r}=$
(A) 4
(B) 8
(C) 2
(D) 6
Q. 26 In a triangle $A B C, \frac{a \cos A+b \cos B+c \cos C}{a+b+c}$ is equal to-
(A) $\frac{r}{R}$
(B) $\frac{R}{r}$
(C) $\frac{2 r}{R}$
(D) $\frac{R}{2 r}$
Q. 27 If the sides of a triangle are $3: 7: 8$ then $\mathrm{R}: \mathrm{r}=$
(A) $2: 7$
(B) $7: 2$
(C) $3: 7$
(D) $7: 3$
Q. 28 In an equilateral triangle the inradius and the circumradius are consected by-
(A) $r=4 R$
(B) $r=R / 2$
(C) $r=R / 3$
(D) None of these
Q. 29 The inradius of the triangle whose sides are $3,5,6$, is-
(A) $\sqrt{\frac{8}{7}}$
(B) $\sqrt{8}$
(C) $\sqrt{7}$
(D) $\sqrt{\frac{7}{8}}$
$\mathbf{r}_{1}, \mathbf{r}_{2} \boldsymbol{\&} \mathbf{r}_{3}$
Q. 30 In an equilateral triangle, the in-radius, circumradius and one of the ex- radii are in the ratio-
(A) $2: 3: 5$
(B) $1: 2: 3$
(C) $1: 3: 7$
(D) $3: 7: 9$
Q. 31
$\mathrm{r}_{2} \mathrm{r}_{3}+\mathrm{r}_{3} \mathrm{r}_{1}+\mathrm{r}_{1} \mathrm{r}_{2}=$
(A) s^{2}
(B) s
(C) $\mathrm{s} / \mathrm{r}^{3}$
(D) R^{2}
Q. $32\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)=$
(A) Rs^{2}
(B) $2 \mathrm{Rs}^{2}$
(C) $3 \mathrm{Rs}^{2}$
(D) $4 \mathrm{Rs}^{2}$
Q. 33 If $r_{1}=r_{2}+r_{3}+r$, then the Δ is-
(A) Equilateral
(B) Isosceles
(C) Right angled
(D) None of these
Q. 34 If $\frac{r}{r_{1}}=\frac{r_{2}}{r_{3}}$, then-
(A) $\mathrm{A}=90^{\circ}$
(B) $\mathrm{B}=90^{\circ}$
(C) $\mathrm{C}=90^{\circ}$
(D) None of these

LEVEL- 2

Q. 1 If in a triangle the angles are in A.P. and $\mathrm{b}: \mathrm{c}=$ $\sqrt{3}: \sqrt{2}$, then $\angle \mathrm{A}$ is equal to -
(A) 30°
(B) 60°
(C) 15°
(D) 75°
Q. 2 In $\triangle \mathrm{ABC}$, if $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}=\sin ^{2} \mathrm{C}$, then the triangle is -
(A) Equilateral
(B) Isosceles
(C) Right angled
(D) None of these
Q. 3 If in a $\triangle A B C, \cos A=\frac{\sin B}{2 \sin C}$, then the $\triangle A B C$ is -
(A) Equilateral
(B) Isosceles
(C) Right angled
(D) None of these
Q. 4 If $c^{2}=a^{2}+b^{2}$, then
$4 \mathrm{~s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})=$
(A) s^{4}
(B) $b^{2} c^{2}$
(C) $c^{2} a^{2}$
(D) $a^{2} b^{2}$
Q. $5 \frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=$
(A) $\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
(B) $\frac{b^{2}+c^{2}}{b^{2}-c^{2}}$
(C) $\frac{c^{2}-a^{2}}{a^{2}+b^{2}}$
(D) None of these
Q. $6 \quad \mathrm{rr}_{1}+\mathrm{r}_{2} \mathrm{r}_{3}=$
(A) ba
(B) ac
(C) $b c$
(D) abc
Q. $7 \mathrm{r}_{1}+\mathrm{r}_{2}=$
(A) $\mathrm{c} \tan \left(\frac{\mathrm{C}}{2}\right)$
(B) $\mathrm{c} \cot \left(\frac{\mathrm{C}}{2}\right)$
(C) $\mathrm{c} \sin \left(\frac{\mathrm{C}}{2}\right)$
(D) $c \cos \left(\frac{\mathrm{C}}{2}\right)$
Q. $8 \quad 16 R^{2} \mathrm{rr}_{1} \mathrm{r}_{2} \mathrm{r}_{3}=$
(A) abc
(B) $a^{3} b^{3} c^{3}$
(C) $a^{2} b^{2} c^{2}$
(D) $a^{2} b^{3} c^{4}$
Q. 9 In $\triangle A B C, a \sin (B-C)+b \sin (C-A)$ $+\mathrm{c} \sin (\mathrm{A}-\mathrm{B})=$
(A) 0
(B) $a+b+c$
(C) $a^{2}+b^{2}+c^{2}$
(D) $2\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$
Q. 10 In a $\triangle A B C$, if $a=8, b=15, c=17$ then $\sin \frac{A}{2}$ and $\cos \mathrm{A}$ are equal to-
(A) $\frac{1}{\sqrt{17}}, \frac{15}{17}$
(B) $\frac{2}{\sqrt{17}}, \frac{13}{17}$
(C) $\frac{2}{\sqrt{17}}, \frac{11}{17}$
(D) None of these
Q. 11 In any $\Delta \mathrm{ABC}, 4 \Delta(\cot \mathrm{~A}+\cot \mathrm{B}+\cot \mathrm{C})$ is equal to -
(A) $3\left(a^{2}+b^{2}+c^{2}\right)$
(B) $2\left(a^{2}+b^{2}+c^{2}\right)$
(C) $\left(a^{2}+b^{2}+c^{2}\right)$
(D) None of these
Q. 12 If the sides of a triangle are proportional to the cosine of the opposite angles, then the triangle is-
(A) Right angled
(B) equilateral
(C) obtuse angled
(D) None of these
Q. 13 In a triangle ABC ,
$(a+b+c)(b+c-a)=\lambda b c$ if -
(A) $\lambda<0$
(B) $\lambda>0$
(C) $0<\lambda<4$
(D) $\lambda>4$
Q. 14 In $\triangle A B C$, if $(a+b+c)(a-b+c)=3 a c$, then -
(A) $\angle \mathrm{B}=60^{\circ}$
(B) $\angle \mathrm{B}=30^{\circ}$
(C) $\angle \mathrm{C}=60^{\circ}$
(D) $\angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}$
Q. 15 In a triangle ABC , if $\mathrm{b}^{2}+\mathrm{c}^{2}=3 \mathrm{a}^{2}$, then $\cot \mathrm{B}+\cot \mathrm{C}-\cot \mathrm{A}$ is equals to -
(A) 1
(B) $\frac{a b}{4 \Delta}$
(C) 0
(D) $\frac{\mathrm{ac}}{4 \Delta}$
Q. 16 In $\triangle \mathrm{ABC}$, if $2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$, then the value of $\frac{\mathrm{s}(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}-\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}=$
(A) $\sin A$
(B) $\cos \mathrm{A}$
(C) $\tan \mathrm{A}$
(D) None of these
Q. 1 If the median of $\triangle \mathrm{ABC}$ through A is perpendicular to AB , then-
(A) $\tan \mathrm{A}+\tan \mathrm{B}=0$
(B) $2 \tan \mathrm{~A}+\tan \mathrm{B}=0$
(C) $\tan A+2 \tan B=0$ (D) None of these
Q. 2 In a $\triangle A B C$, if $r=r_{2}+r_{3}-r_{1}$, and $\angle A>\frac{\pi}{3}$ then the range of $\frac{s}{a}$ is equal to-
(A) $\left(\frac{1}{2}, 2\right)$
(B) $\left(\frac{1}{2}, \infty\right)$
(C) $\left(\frac{1}{2}, 3\right)$
(D) $(3, \infty)$
Q. 3 If in a triangle ABC , $\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}=1$, then the sides are proportional to-
(A) $1: 1: \sqrt{2}$
(B) $1: \sqrt{2}: 1$
(C) $\sqrt{2}: 1: 1$
(D) None of these
Q. 4 If λ be the perimeter of the $\triangle \mathrm{ABC}$ then
$\mathrm{b} \cos ^{2} \frac{\mathrm{C}}{2}+\mathrm{c} \cos ^{2} \frac{\mathrm{~B}}{2}$ is equal to-
(A) λ
(B) 2λ
(C) $\lambda / 2$
(D) None of these
Q. 5 In any triangle $\mathrm{ABC}, \sum \frac{\sin ^{2} \mathrm{~A}+\sin \mathrm{A}+1}{\sin \mathrm{~A}}$ is always greater than-
(A) 9
(B) 3
(C) 27
(D) None of these
Q. 6 In a $\triangle A B C, a \cot A+b \cot B+c \cot C=$
(A) $r+R$
(B) $r-R$
(C) $2(r+R)$
(D) $2(r-R)$
Q. 7 If in a $\triangle A B C, 3 a=b+c$ then $\tan \frac{B}{2} \cdot \tan \frac{C}{2}$ is equal to-
(A) $\tan \frac{\mathrm{A}}{2}$
(B) 1
(C) 2
(D) None of these
Q. 8 The equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of a $\triangle \mathrm{ABC}$ and the equation $x^{2}+\sqrt{2} x+1=0$ have a common root. The measure of $\angle \mathrm{C}$ is-
(A) 90°
(B) 45°
(C) 60°
(D) None of these
Q. 9 In a $\triangle A B C$, $(c+a+b)(a+b-c)=a b$. The measure of $\angle \mathrm{C}$ is-
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) None of these
Q. 10 The diameter of the circumcircle of a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm is-
(A) $\frac{3 \sqrt{6}}{2} \mathrm{~cm}$
(B) $2 \sqrt{6} \mathrm{~cm}$
(C) $\frac{35}{48} \mathrm{~cm}$
(D) None of these
Q. 11 Let A, B and C are the angles of a triangle and $\tan \left(\frac{\mathrm{A}}{2}\right)=\frac{1}{3}, \tan \left(\frac{\mathrm{~B}}{2}\right)=\frac{2}{3}$. Then $\tan \left(\frac{\mathrm{C}}{2}\right)$ is equal to-
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{2}{9}$
(D) $\frac{7}{9}$
Q. 12 If $\mathrm{A}, \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ be the area of the incircle and excircles then $\frac{1}{\sqrt{\mathrm{~A}_{1}}}+\frac{1}{\sqrt{\mathrm{~A}_{2}}}+\frac{1}{\sqrt{\mathrm{~A}_{3}}}$ is equal to-
(A) $\frac{1}{\sqrt{\mathrm{~A}}}$
(B) $\frac{2}{\sqrt{\mathrm{~A}}}$
(C) $\frac{3}{\sqrt{\mathrm{~A}}}$
(D) None of these
Q. 13 If α, β, γ are the altitudes of a $\triangle \mathrm{ABC}$ and 2 s denotes its perimeter, then $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$ is equal to-
(A) $\frac{\Delta}{\mathrm{s}}$
(B) $\frac{\mathrm{s}}{\Delta}$
(C) $\mathrm{s} . \Delta$
(D) None of these
Q. 14 If the perpendicular AD divides the base of the $\triangle \mathrm{ABC}$ such that BD, CD and AD are in ratio $2: 3: 6$, then angle A is equal to-
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{6}$
Q. 15 Two sides of a triangle are given by the roots of the equation $x^{2}-2 \sqrt{3} x+2=0$. The angle between the sides is $\frac{\pi}{3}$. The perimeter of the triangle is-
(A) $6+\sqrt{3}$
(B) $2 \sqrt{3}+\sqrt{6}$
(C) $2 \sqrt{6}+\sqrt{10}$
(D) None of these
Q. 16 In a $\triangle A B C$, if $3 \tan \frac{A}{2} \tan \frac{C}{2}=1$, then sides a, b, c are in-
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
Q. 17 In $\triangle \mathrm{ABC}$, if $\mathrm{a}=16, \mathrm{~b}=24, \mathrm{c}=20$, then $\sin \frac{\mathrm{A}}{2}$ is equal to -
(A) $\frac{1}{2 \sqrt{2}}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{3}{2 \sqrt{2}}$
(D) None of these
Q. 18 With usual notations, in a $\triangle \mathrm{ABC}$, $\frac{b^{2}-c^{2}}{a \sec C}+\frac{c^{2}-a^{2}}{b \sec C}+\frac{a^{2}-b^{2}}{c \sec C}$ is equal to-
(A) 1
(B) 0
(C) abc
(D) None of these
Q. 19 In an equilateral triangle-
(A) $r_{1}=r_{2}=r_{3}=2 r$
(B) $r_{1}=r_{2}=r_{3}=r$
(C) $\mathrm{r}_{1}=\mathrm{r}_{2}=\mathrm{r}_{3}=3 \mathrm{r}$
(D) None of these

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a, is-
[AIEEE 2003]
(A) $\frac{\mathrm{a}}{4} \cot \left(\frac{\pi}{2 \mathrm{n}}\right)$
(B) $a \cot \left(\frac{\pi}{n}\right)$
(C) $\frac{\mathrm{a}}{2} \cot \left(\frac{\pi}{2 \mathrm{n}}\right)$
(D) $a \cot \left(\frac{\pi}{2 n}\right)$
Q. 2 If in a triangle ABC , $a \cos ^{2}\left(\frac{C}{2}\right)+c \cos ^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$, then the sides a, b and c
[AIEEE 2003]
(A) satisfy $a+b=c$
(B) are in A.P.
(C) are in G.P.
(D) are in H.P.
Q. 3 The sides of a triangle are $\sin \alpha, \cos \alpha$ and $\sqrt{1+\sin \alpha \cos \alpha}$ for some $0<\alpha<\frac{\pi}{2}$. Then the greatest angle of the triangle is-
[AIEEE 2004]
(A) 60°
(B) 90°
(C) 120°
(D) 150°
Q. 4 In a triangle ABC , let $\angle \mathrm{C}=\frac{\pi}{2}$. If r is the in-radius and R is the circumradius of the triangle ABC , then $2(\mathrm{r}+\mathrm{R})$ equals-
[AIEEE-2005]
(A) $b+c$
(B) $a+b$
(C) $a+b+c$
(D) $\mathrm{c}+\mathrm{a}$
Q. 5 For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is-
[AIEEE 2010]
(A) There is a regular polygon with $\frac{\mathrm{r}}{\mathrm{R}}=\frac{1}{2}$
(B) There is a regular polygon with $\frac{\mathrm{r}}{\mathrm{R}}=\frac{1}{\sqrt{2}}$
(C) There is a regular polygon with $\frac{\mathrm{r}}{\mathrm{R}}=\frac{2}{3}$
(D) There is a regular polygon with $\frac{\mathrm{r}}{\mathrm{R}}=\frac{\sqrt{3}}{2}$
Q. $6 \quad A B C D$ is a trapezium such that $A B$ and $C D$ are parallel and $\mathrm{BC} \perp \mathrm{CD}$. If $\angle \mathrm{ADB}=\theta, \mathrm{BC}=\mathrm{p}$ and $C D=q$, then $A B$ is equal to - [JEE Main- 2013]
(A) $\frac{\mathrm{p}^{2}+\mathrm{q}^{2}}{\mathrm{p}^{2} \cos \theta+\mathrm{q}^{2} \sin \theta}$
(B) $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{(p \cos \theta+q \sin \theta)^{2}}$
(C) $\frac{\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) \sin \theta}{\mathrm{p} \cos \theta+\mathrm{q} \sin \theta}$
(D) $\frac{p^{2}+q^{2} \cos \theta}{p \cos \theta+q \sin \theta}$

SECTION -B

Q. 1 If in a triangle ABC ,
$\frac{2 \cos \mathrm{~A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{2 \cos \mathrm{C}}{\mathrm{c}}=\frac{\mathrm{a}}{\mathrm{bc}}+\frac{\mathrm{b}}{\mathrm{ca}}$ then the value of the angle A .
[IIT-1993]
(A) $\pi / 3$
(B) π
(C) $\pi / 2$
(D) $\pi / 6$
Q. 2 In a $\triangle A B C$, if $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$ and the side $\mathrm{a}=2$, then area of the triangle is-
[IIT-1993]
(A) 1
(B) 2
(C) $\frac{\sqrt{3}}{2}$
(D) $\sqrt{3}$
Q. 3 The sides of a triangle inscribed in a given circle subtend angles α, β, γ at the centre. The minimum value of the A. M. of $\cos \left(\alpha+\frac{\pi}{2}\right)$, $\cos \left(\beta+\frac{\pi}{2}\right)$ and $\cos \left(\gamma+\frac{\pi}{2}\right)$ is equal to-
[IIT-1994]
(A) $\frac{\sqrt{3}}{2}$
(B) $-\frac{\sqrt{3}}{2}$
(C) $-\frac{2}{\sqrt{3}}$
(D) $\sqrt{2}$
Q. 4 In a triangle $\mathrm{ABC}, \angle \mathrm{B}=\frac{\pi}{3}$ and $\angle \mathrm{C}=\frac{\pi}{4}$, Let D divide BC internally in the ratio $1: 3$. Then $\frac{\sin \angle \mathrm{BAD}}{\sin \angle \mathrm{CAD}}$ equal to-
[IIT-1995]
(A) $\frac{1}{\sqrt{6}}$
(B) $\frac{1}{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\sqrt{\frac{2}{3}}$
Q. 5 If in a triangle $P Q R, \sin P, \sin Q$ and $\sin R$ are in A.P., then
[IIT-1998]
(A) the altitudes are in A.P.
(B) the altitudes are in H.P.
(C) the medians are in G.P.
(D) the medians are in A.P.
Q. 6 If the radius of circumcircle of an isosceles triangle PQR is equal to $\mathrm{PQ}(=\mathrm{PR})$, then the angle P is-
[IIT(s)1998]
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$
Q. 7 If the vertices $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ of a triangle PQR and rational points, then which of the following points of the triangle PQR is (are) always rational point (s)?
[IIT-1998]
(A) Centroid
(B) Incentre
(C) Circumcentre
(D) Orthocentre
Q. 8 In a triangle $\mathrm{PQR}, \angle \mathrm{R}=\frac{\pi}{2}$.

If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $\mathrm{ax}^{2}+b x+c=0(a \neq 0)$, then
[IIT-1999]
(A) $a+b=c$
(B) $b+c=a$
(C) $a+c=b$
(D) $b=c$
Q. 9 In a $\triangle \mathrm{ABC}, 2 \mathrm{ac} \sin \left(\frac{\mathrm{A}-\mathrm{B}+\mathrm{C}}{2}\right)=$ [IIT-2000]
(A) $a^{2}+b^{2}-c^{2}$
(B) $c^{2}+a^{2}-b^{2}$
(C) $b^{2}-c^{2}-a^{2}$
(D) $c^{2}-a^{2}-b^{2}$
Q. 10 If the angles of a triangle are in ratio $4: 1: 1$ then the ratio of the longest side and perimeter of triangle is :
[IIT Scr.2003]
(A) $\frac{1}{2+\sqrt{3}}$
(B) $\frac{2}{\sqrt{3}-2}$
(C) $\frac{\sqrt{3}}{2+\sqrt{3}}$
(D) none of these
Q. 11 If the sides a, b, c of a triangle are such that $\mathrm{a}: \mathrm{b}: \mathrm{c}:: 1: \sqrt{3}: 2$, then $\mathrm{A}: \mathrm{B}: \mathrm{C}$ is-
[IIT Scr.2004]
(A) $3: 2: 1$
(B) $3: 1: 2$
(C) $1: 3: 2$
(D) $1: 2: 3$
Q. 12 In any $\Delta \mathrm{ABC}$ having sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ opposite to angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then-
[IIT Scr.2005]
(A) $a \sin \left(\frac{B-C}{2}\right)=(b-c) \cos \frac{A}{2}$
(B) $a \cos \frac{A}{2}=(b-c) \sin \frac{B-C}{2}$
(C) $a \cos \frac{A}{2}=(b+c) \sin \frac{B+C}{2}$
(D) $a \sin \frac{B+C}{2}=(b+c) \cos \frac{A}{2}$
Q. 13 A regular polygon of nine sides, each of length 2 is inscribed in a circle. The radius of the circle is -
[IIT-1994]
(A) $\operatorname{cosec}\left(\frac{\pi}{9}\right)$
(B) $\operatorname{cosec}\left(\frac{\pi}{3}\right)$
(C) $\cot \left(\frac{\pi}{9}\right)$
(D) $\tan \left(\frac{\pi}{9}\right)$
Q. 14 In a triangle $\mathrm{ABC}, \mathrm{a}: \mathrm{b}: \mathrm{c}=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is-
[IIT-1996]
(A) $16 / 7$
(B) $7 / 16$
(C) $16 / 3$
(D) none of these
Q. 15 In any equilateral Δ, three circles of radii one are touching to the sides given as in the figure then area of the Δ
[IIT-2005]

(A) $6+4 \sqrt{3}$
(B) $12+8 \sqrt{3}$
(C) $7+4 \sqrt{3}$
(D) $4+\frac{7}{2} \sqrt{3}$
Q. 16 If the angle A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression
$\frac{\mathrm{a}}{\mathrm{c}} \sin 2 \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \sin 2 \mathrm{~A}$ is
[IIT 2010]
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) 1
(D) $\sqrt{3}$
Q. 17 Let ABC be a triangle such that $\angle \mathrm{ACB}=\frac{\pi}{6}$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value (s) of x for which $a=x^{2}+x+1, b=x^{2}-1$ and $\mathrm{c}=2 \mathrm{x}+1$ is (are)
[IIT 2010]
(A) $-(2+\sqrt{3})$
(B) $1+\sqrt{3}$
(C) $2+\sqrt{3}$
(D) $4 \sqrt{3}$

Numerical Response Question:

Q. 18 Let ABC and ABC^{\prime} be two non-congruent triangles with sides $\mathrm{AB}=4, \mathrm{AC}=\mathrm{AC}^{\prime}=2 \sqrt{2}$ and angle $\mathrm{B}=30^{\circ}$. The absolute value of difference between the areas of these triangles is.. \qquad [IIT 2009]
Q. 19 Let $P Q R$ be a triangle of area Δ with $\mathrm{a}=2$, $\mathrm{b}=\frac{7}{2}$ and $\mathrm{c}=\frac{5}{2}$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P-\sin 2 P}{2 \sin P+\sin 2 P}$ equals
[IIT 2012]
(A) $\frac{3}{4 \Delta}$
(B) $\frac{45}{4 \Delta}$
(C) $\left(\frac{3}{4 \Delta}\right)^{2}$
(D) $\left(\frac{45}{4 \Delta}\right)^{2}$
Q. 20 In a triangle $P Q R, P$ is the largest angle and cos $\mathrm{P}=\frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are) -
[JEE - Advance 2013]
(A) 16
(B) 18
(C) 24
(D) 22

LEVEL- 1

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	A	C	C	C	A	C	D	D	C	A	B	C	C	B	B	D	C	D	A	B
Q.No.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$						
Ans.	A	B	C	A	A	A	B	B	A	B	A	D	C	C						

LEVEL- 2

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
Ans.	D	C	B	D	A	C	B	C	A	A	C	B	C	A	C	B

LEVEL- 3

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
Ans.	C	A	A	C	A	C	D	B	C	D	D	A	B	C	B	A	A	B	C

LEVEL- 4

SECTION-A

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Ans.	C	B	C	B	C	C

SECTION-B

1.[C] $\frac{2 \cos \mathrm{~A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{2 \cos \mathrm{C}}{\mathrm{c}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{abc}}$
$\frac{2 \mathrm{bc} \cos \mathrm{A}+\mathrm{ac} \cos \mathrm{B}+2 \mathrm{ab} \cos \mathrm{C}}{\mathrm{abc}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{abc}}$
$\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}+\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2}+\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$

$$
\begin{aligned}
& \frac{a^{2}+c^{2}-b^{2}}{2}=a^{2}-b^{2} \\
& a^{2}+c^{2}-b^{2}=2 a^{2}-2 b^{2} \\
& a^{2}+c^{2}=2 a^{2}-b^{2} \\
& c^{2}+b^{2}=a^{2} \text { Hence } \angle A=\pi / 2
\end{aligned}
$$

2.[D] $\frac{\cos \mathrm{A}}{\mathrm{a}}=\frac{\cos \mathrm{B}}{\mathrm{b}}=\frac{\cos \mathrm{c}}{\mathrm{c}}$
$\Rightarrow \frac{\cos \mathrm{A}}{\mathrm{k} \sin \mathrm{A}}=\frac{\cos \mathrm{B}}{\mathrm{k} \sin \mathrm{B}}=\frac{\cos \mathrm{C}}{\mathrm{k} \sin \mathrm{C}}$
$\Rightarrow \cot \mathrm{A}=\cot \mathrm{B}=\cot \mathrm{C}$
$\Rightarrow \mathrm{A}=\mathrm{B}=\mathrm{C}=60^{\circ}$
$\Rightarrow \Delta \mathrm{ABC}$ is equilalateral

$$
\text { Area } \Delta=\frac{\sqrt{3}}{4}(\text { side })^{2}
$$

$$
=\frac{\sqrt{3}}{4} \times 4=\sqrt{3}
$$

3.[B] Here $\alpha+\beta+\gamma=2 \pi$

$$
\text { A.M. } \begin{aligned}
& =\frac{1}{3}[\cos (\alpha+\pi / 2)+\cos (\beta+\pi / 2)+\cos (\gamma+\pi / 2)] \\
& =-\frac{1}{3}[\sin \alpha+\sin \beta+\sin \gamma] \\
= & -\frac{1}{3}\left[2 \sin \frac{\alpha+\beta}{2}+\cos \frac{\alpha-\beta}{2}+2 \sin \frac{\gamma}{2} \cos \frac{\gamma}{2}\right] \\
= & -\frac{2}{3} \sin \frac{\gamma}{2}\left[\cos \frac{\alpha-\beta}{2}+\cos \frac{\alpha+\beta}{2}\right] \\
= & -\frac{4}{3} \sin \alpha / 2 \sin \beta / 2 \sin \gamma / 2
\end{aligned}
$$

The A.M. is least if the product $\sin \alpha / 2 \sin \beta / 2 \sin \gamma / 2$
is greatest But $\sin \alpha / 2 \sin \beta / 2 \sin \gamma / 2$ is greatest when $\sin \alpha / 2=\sin \beta / 2=\sin \gamma / 2$
$\Rightarrow \alpha=\beta=\gamma=120$
Thus Minimum value of A.M. is

$$
\begin{aligned}
& =-\frac{4}{3} \sin ^{3} 60 \\
& =\frac{-\sqrt{3}}{2}
\end{aligned}
$$

4.[A] Let $\angle \mathrm{BAD}=\alpha$ and $\angle \mathrm{CAD}=\beta$

Then in $\triangle \mathrm{BAD}$
$\begin{aligned} & \frac{\mathrm{BD}}{\sin \alpha}=\frac{\mathrm{AD}}{\sin \pi / 3} \\ & \Rightarrow \mathrm{AD}=\frac{\mathrm{BD}}{\sin \alpha} \frac{\sqrt{3}}{2}\end{aligned}$
In $\triangle \mathrm{CAB} \frac{\mathrm{CD}}{\sin \beta}=\frac{\mathrm{AD}}{\sin \pi / 4}$
$A B=\frac{C D}{\sin \beta} \times \frac{1}{\sqrt{2}}$
$\frac{\mathrm{BD}}{\sin \alpha} \sqrt{\frac{3}{2}}=\frac{\mathrm{CD}}{\sin \beta} \times \frac{1}{\sqrt{2}}$
$\Rightarrow \frac{\sqrt{3}}{\sqrt{2}} \times \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\sin \alpha}{\sin \beta}$
Or $\frac{\sin \alpha}{\sin \beta}=\frac{1}{3} \frac{\sqrt{3}}{2}=\frac{1}{\sqrt{6}}$
$\frac{\sin \angle \mathrm{BAD}}{\sin \angle \mathrm{CAB}}=\frac{1}{\sqrt{6}}$
5.[B] Let the altitude through $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ be respectively α, β, γ then
$\Delta=\frac{1}{2} \alpha \mathrm{P}=\frac{1}{2} \mathrm{qr} \sin \mathrm{P}$
$\Rightarrow \sin P=\frac{\alpha P}{q r}$
Similarly $\sin \mathrm{Q}=\frac{\mathrm{Bq}}{\mathrm{rP}}$ and $\sin \mathrm{R}=\frac{\mathrm{ry}}{\mathrm{pq}}$
Now $\frac{\sin P}{p}=\frac{\sin Q}{q}=\frac{\sin R}{r}$
$\Rightarrow \frac{\alpha}{\mathrm{qr}}=\frac{\beta}{\mathrm{rp}}=\frac{\gamma}{\mathrm{pq}}$
$\alpha ; \beta ; \gamma=\frac{1}{\mathrm{p}}: \frac{1}{\mathrm{q}}: \frac{1}{\mathrm{r}}$

$$
=\frac{1}{\sin P}: \frac{1}{\sin Q}: \frac{1}{\sin R}
$$

Since $\sin P, \sin Q, \sin R$ are in A.P.
$\Rightarrow \alpha, \beta, \gamma$ are H.P.
6.[B] In DPQR radius of circumcircle is $\mathrm{PQ}=\mathrm{PR}$

$$
\begin{aligned}
& \mathrm{PQ}=\mathrm{PR}=\frac{\mathrm{PQ}}{2 \sin \mathrm{R}}=\frac{\mathrm{QR}}{2 \sin \mathrm{P}}=\frac{\mathrm{PR}}{2 \sin \mathrm{Q}} \\
& \Rightarrow \sin \mathrm{R}=\sin \mathrm{Q}=\frac{1}{2} \Rightarrow \angle \mathrm{R}=\angle \mathrm{Q}=\pi / 6 \\
& \angle \mathrm{P}=\pi-\angle \mathrm{R}-\angle \mathrm{Q}=2 \pi / 3
\end{aligned}
$$

7.[A] Since the coordinates of the centroid are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
Centroid is always a rational point
8.[A] $\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=\pi$
$\mathrm{P}+\mathrm{Q}=\pi / 2$
$\mathrm{P} / 2+\mathrm{Q} / 2=\pi / 4$
$\tan (\mathrm{P} / 2+\mathrm{Q} / 2)=\tan \pi / 4$
$\frac{\tan P / 2+\tan Q / 2}{1-\tan P / 2 \tan Q / 2}=1$
$\Rightarrow \frac{-\mathrm{b} / \mathrm{a}}{1-\mathrm{c} / \mathrm{a}}=1$
$\Rightarrow \frac{-\mathrm{b}}{\mathrm{a}-\mathrm{c}}=1$
$\mathrm{a}-\mathrm{c}=-\mathrm{b}$
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
9.[B] $\quad 2 \mathrm{ac} \sin \left(\frac{\mathrm{A}+\mathrm{C}-\mathrm{B}}{2}\right)$
$=2 \mathrm{ac} \sin \frac{(\pi-2 \mathrm{~B})}{2}$
$=2 \mathrm{ac} \cos \mathrm{B}$
$=2 \mathrm{ac} \frac{\left(\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}\right)}{2 \mathrm{ac}}$
$=\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}$
10.[C] $\angle \mathrm{A}=4 \mathrm{x}$
$\angle B=x$
$\angle \mathrm{C}=\mathrm{x}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180$ $6 \mathrm{x}=180$
$\mathrm{x}=30^{\circ}$
$\angle \mathrm{A}=120^{\circ}$
$\angle \mathrm{B}=30^{\circ}$
$\angle \mathrm{C}=30^{\circ}$
$\frac{\mathrm{a}}{\sin 120}=\frac{\mathrm{b}}{\sin 10}=\frac{\mathrm{c}}{\sin 30}=\mathrm{k}$
$a=\frac{\sqrt{3}}{2} k$
$\mathrm{b}=\frac{\mathrm{k}}{2}$
$\mathrm{c}=\frac{\mathrm{k}}{2}$
$2 \mathrm{~S}=\mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{\sqrt{3}}{2} \mathrm{k}+\mathrm{k}$
$\frac{\mathrm{a}}{2 \mathrm{~S}}=\frac{\frac{\sqrt{3} \mathrm{k}+2 \mathrm{k}}{2}}{\frac{\sqrt{3} \mathrm{k}}{2}}=\frac{\sqrt{3}+2}{\sqrt{3}} \frac{\frac{\sqrt{3} k}{2}}{\frac{\sqrt{3} \mathrm{k}+2 \mathrm{k}}{2}}=\frac{\sqrt{3}}{2+\sqrt{3}}$
11.[D] Let $\mathrm{a}=\mathrm{x}$

$$
\begin{aligned}
& \mathrm{b}=\mathrm{x} \\
& \mathrm{c}=2 \mathrm{x}
\end{aligned}
$$

$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{3 x^{2}+4 x^{2}-x^{2}}{4 \sqrt{3} x^{2}}$

$$
=\frac{6 x^{2}}{4 \sqrt{3} x^{2}}
$$

$\cos A=\frac{\sqrt{3}}{2}=\cos 30$
$\cos \angle \mathrm{A}=30$
$\cos \mathrm{B}=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2 \mathrm{ac}}=\frac{\mathrm{x}^{2}+4 \mathrm{x}^{2}-3 \mathrm{x}^{2}}{4 \mathrm{x}^{2}}$
$\cos \mathrm{B}=\frac{2 \mathrm{x}^{2}}{4 \mathrm{x}^{2}}=\frac{1}{2}=\cos 60$
$\mathrm{B}=60^{\circ}$
$\angle \mathrm{C}=90^{\circ}$
A: B:C $=1: 2: 3$
12.[A] $\quad \frac{b+c}{a}=\frac{\sin B+\sin C}{\sin A}$

$$
\begin{aligned}
& =\frac{2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}}{2 \sin A / 2 \cos A / 2} \\
& =\frac{\cos \frac{B-C}{2}}{\sin A / 2}[B+C=\pi-A] \\
\frac{b-c}{a} & =\frac{\sin \mathrm{B}-\sin \mathrm{C}}{\sin \mathrm{~A}} \\
& =\frac{2 \cos \frac{\mathrm{~B}+\mathrm{C}}{2} \sin \frac{\mathrm{~B}-\mathrm{C}}{2}}{2 \sin \mathrm{~A} / 2 \cos \mathrm{~A} / 2} \\
& =\frac{\sin \frac{\mathrm{B}-\mathrm{C}}{2}}{\cos \mathrm{~A} / 2}
\end{aligned}
$$

13.[C] If r is the radius of inscribed circle of n side polygon then
$\mathrm{r}=\frac{\mathrm{a}}{2} \cot \left(\frac{\pi}{\mathrm{n}}\right)$
Hence $\mathrm{a}=2$ and $\mathrm{n}=9$

$$
\mathrm{r}=\cot \left(\frac{\pi}{9}\right)
$$

14.[A] $a: b: c=4: 5: 6$

Let $\mathrm{a}=4 \mathrm{k}$
$b=5 x$
$\mathrm{c}=6 \mathrm{x}$
$\mathrm{s}=\frac{15 \mathrm{x}}{2}$

$$
\begin{aligned}
\Delta & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{\frac{15 x}{2}\left(\frac{15 x}{2}-4 x\right)\left(\frac{15 x}{2}-5 x\right)\left(\frac{15 x}{2}-6 x\right)} \\
& =\sqrt{\frac{15 x \times 7 x \times 5 x \times 3 x}{4 \times 4}} \\
& =\frac{15 x^{2} \sqrt{7}}{4} \\
\mathrm{r} & =\frac{\Delta}{\mathrm{S}}=\frac{\sqrt{7} \mathrm{x}}{2} \\
\mathrm{R} & =\frac{\mathrm{abc}}{4 \Delta}=\frac{8 \mathrm{x}}{\sqrt{7}} \\
\frac{\mathrm{R}}{\mathrm{r}} & =\frac{16}{7}
\end{aligned}
$$

15.[A] $\angle \mathrm{C}_{3} \mathrm{AM}=\pi / 6$
$\Rightarrow \mathrm{AM}=\mathrm{C}_{3} \mathrm{M} \cot \pi / 6=\sqrt{3}$

Now side of the $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =\mathrm{AM}+\mathrm{MN}+\mathrm{NC} \\
& =\sqrt{3}+2+\sqrt{3} \\
& =2(1+\sqrt{3})
\end{aligned}
$$

Hence Area $=\frac{\sqrt{3}}{4}(\text { side })^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4}(1+\sqrt{3})^{2} \\
& =6+4 \sqrt{3}
\end{aligned}
$$

16.[D] A, B, C A.P.
$2 \mathrm{~B}=\mathrm{A}+\mathrm{C}$
$A+B+C=180^{\circ} \Rightarrow 3 B=180 \Rightarrow B=60^{\circ}$
$\frac{\mathrm{a}}{\mathrm{c}} \sin 2 \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \sin 2 \mathrm{~A}=$
$=\frac{\mathrm{a}}{\mathrm{c}} 2 \sin \mathrm{C} \cos \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} 2 \sin \mathrm{~A} \cos \mathrm{~A}$
$=\frac{a^{\prime} \cos C}{R}+\frac{C \cos A}{R} \Rightarrow \frac{a \cos c+c \cos A}{R}$
$=\left\{\because \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2 R}\right.$
$=\frac{\mathrm{a} \cos \mathrm{C}+\mathrm{c} \cos \mathrm{A}}{\mathrm{R}}=\frac{\mathrm{b}}{\mathrm{R}}$
$=\frac{2 R \sin \mathrm{~B}}{\mathrm{R}}=2 \sin 60=\sqrt{3}$
17.[B] Using cosine rule for $\angle \mathrm{C}$

$$
\begin{aligned}
& \frac{\sqrt{3}}{2}=\frac{\left(\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}+\left(\mathrm{x}^{2}-1\right)^{2}-(2 \mathrm{x}+1)^{2}}{2\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{2}-1\right)} \\
& \Rightarrow \sqrt{3}=\frac{2 \mathrm{x}^{2}+2 \mathrm{x}-1}{\mathrm{x}^{2}+\mathrm{x}+1} \\
& \Rightarrow(\sqrt{3}-2) \mathrm{x}^{2}+(\sqrt{3}-2) \mathrm{x}+(\sqrt{3}+1)=0 \\
& \Rightarrow \mathrm{x}=\frac{(2-\sqrt{3}) \pm \sqrt{3}}{2(\sqrt{3}-2)} \\
& \Rightarrow \mathrm{x}=-(2+\sqrt{3}), 1+\sqrt{3} \\
& \quad \mathrm{x}=1+\sqrt{3}
\end{aligned}
$$

18.[4] $\cos 30=\frac{\mathrm{a}^{2}+16-8}{2 \times \mathrm{a} \times 4}$

$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{a}^{2}+8}{2}$
$\Rightarrow \mathrm{a}^{2}-4 \sqrt{3} \mathrm{a}+8=0$
$\Rightarrow \mathrm{a}_{1}+\mathrm{a}_{2}=4 \sqrt{3}$
$\left|a_{1}-a_{2}\right|=4$
$\left|\Delta_{1}-\Delta_{2}\right|=\frac{1}{2} \times 4 \sin 30 \times 4=4$

19.[C]

$\mathrm{a}=2$
$\mathrm{b}=7 / 2\} \Rightarrow \mathrm{s}=4$
$\mathrm{c}=5 / 2$

$$
\begin{aligned}
& \frac{2 \sin \mathrm{P}-2 \sin \mathrm{P} \cos \mathrm{P}}{2 \sin \mathrm{P}+2 \sin \mathrm{P} \cos \mathrm{P}}=\frac{1-\cos \mathrm{P}}{1+\cos \mathrm{P}} \\
& \Delta=\sqrt{4 \cdot 2 \cdot \frac{1}{2} \cdot \frac{3}{2}}=\sqrt{6} \\
& =\tan ^{2} \frac{\mathrm{P}}{2} \\
& =\left(\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{s}(\mathrm{~s}-\mathrm{a})}}\right)^{2} \\
& =\frac{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)}{4(2)}=\frac{3}{32} \\
& =\left(\frac{9}{16.6}\right)=\left(\frac{3}{4 \Delta}\right)^{2}
\end{aligned}
$$

20. [B,D]

So the sides of triangles are, 18, 20, 22.

